Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Visualizing the spatial map in the brain
Yi Gu headshot copy.jpg
McGovern Institute for Brain Research
Seminar

Visualizing the spatial map in the brain

Speaker(s)
Yi Gu, PhD
Add to CalendarAmerica/New_YorkVisualizing the spatial map in the brain03/05/2019 3:00 pm03/05/2019 4:15 pm46-3189 McGovern Seminar Room
March 5, 2019
3:00 pm - 4:15 pm
Location
46-3189 McGovern Seminar Room
Contact
Julia Martin
    Description

    Speaker: Dr. Yi Gu, PhD; Princeton Neuroscience Institute

    Talk Title: Visualizing the spatial map in the brain

    Abstract: The ability of knowing where we are and finding our way during spatial navigation is closely associated with an “inner GPS” in the brain, the hippocampal-entorhinal circuit. The medial entorhinal cortex (MEC) contains “grid cells”, which have one of the most mysterious activity patterns in the brain, as their firing fields lie on a triangular lattice when animals navigate in an open arena. These grid cells together may serve as a coordinate system allowing precise positioning during navigation. Here I will present my study on grid cells in understanding the formation of their activity patterns and their roles in path integration. First, combining cellular-resolution two-photon imaging and virtual reality, I revealed a topographical map of grid cells in the mouse MEC according to their firing properties. This map contributes to a foundation for evaluating circuit models of grid cell network and is consistent with continuous attractor models as the mechanism of grid formation. Second, I discovered a novel cell type, “cue cell”, in the MEC. Cue cells specifically encode landmark information during virtual navigation and are potentially important for correcting errors in grid cell network during path integration. In my future laboratory, I will develop multifaceted research programs to understand the MEC in both health and disease at the circuit and molecular levels.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology