Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Synapse Formation and Plasticity: Effects of Biological-Sex and Synaptic Nanostructure
Image 9-4-19 at 1.44 PM.jpg
Molecular and Cellular Neuroscience (MCN) Program
Seminar

Synapse Formation and Plasticity: Effects of Biological-Sex and Synaptic Nanostructure

Speaker(s)
Matthew Dalva
Add to CalendarAmerica/New_YorkSynapse Formation and Plasticity: Effects of Biological-Sex and Synaptic Nanostructure12/06/2019 9:00 pm12/06/2019 10:00 pmSingleton Auditorium, Building 46, Room 3002
December 6, 2019
9:00 pm - 10:00 pm
Location
Singleton Auditorium, Building 46, Room 3002
Contact
Charles Moss
    Description

    Synapse Formation and Plasticity: Effects of Biological-Sex and Synaptic Nanostructure

    Additional Info

    Research and Clinical Interests

    The long-range goal of my research program is to understand how synapses and functional neural circuits are generated.

    The structure of the nervous system varies tremendously across phylogeny; organisms such as the C. elegans function with a few hundred neurons, whereas humans have tens of billions. Yet communication in all neural circuits is controlled by a remarkably similar, highly specialized site of cell-cell contact known as a synapse. The goal of my research program is to understand how excitatory spine synapses are formed and lost, and what impact the normal morphology and numbers of these structures have on brain function. Because the excitatory synapse is likely to be central to a number of diseases such as addiction, Alzheimer's disease, and autism, our research will have broad impact.

    To date, our work has focused on elucidating the molecular mechanisms that guide how excitatory spine synapses are formed and lost, and what impact the normal morphology and numbers of these structures have on brain function. In addition we are developing a set of simple but novel genetically encoded fluorescent phosphorylation reporters (Phos) that allow us to visualize and quantify both increases and decreases in tyrosine kinase signaling induced by specific kinases. Building on the tools, techniques, and expertise we have developed we are now turning to the issue of how neurons move to the proper locations within the adult brain.

    To generate functional neuronal circuits and form the proper synapses, neural progenitor cells must not only differentiate into the correct neuronal subtypes, they must also migrate to appropriate locations in the brain. This question is important not only to understand how circuits are formed, but because to meet the therapeutic promise in a wide range of human CNS diseases including addiction, neurodegenerative disorders, and stroke, how the migration and differentiation of endogenous neural progenitor is controlled must understand.

    Overall, by integrating a reductionist approach with careful in vivo experiments we have the potential to generate transformative results that fundamentally advance our understanding of how synapses form, how neurons are guided, and how synapse density impacts circuit function. I am confident our work will continue to impact our understanding of basic nervous system function and provide new tools and strategies for functional recovery in malfunctioning neural networks.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology