Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Serotonergic Circuits that Control Persistent Behavioral States
Screen Shot 2019-09-04 at 12.18.22 PM.png
Molecular and Cellular Neuroscience (MCN) Program
Seminar

Serotonergic Circuits that Control Persistent Behavioral States

Speaker(s)
Steve Flavell
Add to CalendarAmerica/New_YorkSerotonergic Circuits that Control Persistent Behavioral States09/20/2019 8:00 pm09/20/2019 9:00 pmSingleton Auditorium, Building 46, Room 3002
September 20, 2019
8:00 pm - 9:00 pm
Location
Singleton Auditorium, Building 46, Room 3002
Contact
Charles Moss
    Description

    Research Focus: Neural mechanisms for persistent behaviors.

    Neuromodulatory control of circuit-wide neuronal dynamics

    What circuit-wide patterns of neural activity define distinct behavioral states?

    We aim to understand how neuromodulators, like serotonin, coordinate neural activity throughout circuits to generate stable behavioral states.

    Techniques employed include:

    • Circuit-wide calcium imaging in freely-moving animals,
    • Optogenetics,
    • Mutant analysis,
    • Quantitative behavioral analysis.

     

    Speaker Bio

    Steve Flavell completed his undergraduate work at Oberlin College, majoring in Neuroscience. He then pursued graduate studies in Harvard University’s PhD program in Neuroscience. Working in the lab of Michael Greenberg, Steve investigated the mechanisms by which neuronal activity alters gene expression to regulate synapse development and function. His work blended molecular and cellular neurobiology with genomic approaches and was recognized with the Weintraub Graduate Student Award. Steve then worked as a postdoctoral fellow in Cori Bargmann’s lab at Rockefeller University, supported by a fellowship from the Helen Hay Whitney Foundation. Using a combination of behavioral recordings, genetics, in vivo calcium imaging, and optogenetics, Steve characterized a neural circuit capable of generating persistent locomotor states that last from minutes to hours. He joined the faculty of MIT in January 2016, as an assistant professor in Brain and Cognitive Sciences and the Picower Institute for Learning and Memory.

    Additional Info

    Action potentials and synaptic transmission occur over milliseconds, yet the brain generates behaviors that can last seconds to hours. How do neural circuits generate coherent behavioral outputs across a wide range of time scales? What are the neural mechanisms that allow circuits to generate long-lasting behavioral states? And how do physiological and sensory cues alter the outputs of the neural circuits that control these states?

    In examining these questions, we utilize the nervous system of C. elegans, which is a simple, well-defined model system: it contains exactly 302 neurons, every neuron can be reproducibly identified in every animal, and a complete connectome has defined all of the synaptic contacts between these neurons. A variety of precise genetic tools also allows us to manipulate each neuron within this system. By combining these genetic tools with quantitative behavioral analyses, in vivo calcium imaging, and optogenetics, we map out neural circuits that generate behavioral states and aim to decipher the mechanisms that allow these circuits to generate long-lasting behavioral outputs.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology