Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Quest | CBMM Seminar Series: Invariance and equivariance in brains and machines
Quest | CBMM Seminar Series: Invariance and equivariance in brains and machines
Center for Brains, Minds and Machines (CBMM)

Quest | CBMM Seminar Series: Invariance and equivariance in brains and machines

Add to CalendarAmerica/New_YorkQuest | CBMM Seminar Series: Invariance and equivariance in brains and machines 05/07/2024 4:00 pm05/07/2024 5:30 pmSingleton Auditorium,46-3002
May 7, 2024
4:00 pm - 5:30 pm
Location
Singleton Auditorium,46-3002
Contact
penagos@mit.edu
    Description
    Speaker: Bruno Olshausen (UC Berkeley)
     

    Abstract: The goal of building machines that can perceive and act in the world as humans and other animals do has been a focus of AI research efforts for over half a century.   Over this same period, neuroscience has sought to achieve a mechanistic understanding of the brain processes underlying perception and action.  It stands to reason that these parallel efforts could inform one another.  However recent advances in deep learning and transformers have, for the most part, not translated into new neuroscientific insights;  and other than deriving loose inspiration from neuroscience, AI has mostly pursued its own course which now deviates strongly from the brain.  Here I propose an approach to building both invariant and equivariant representations in vision that is rooted in observations of animal behavior and informed by both neurobiological mechanisms (recurrence, dendritic nonlinearities, phase coding) and mathematical principles (group theory, residue numbers).  What emerges from this approach is a neural circuit for factorization that can learn about shapes and their transformations from image data, and a model of the grid-cell system based on high-dimensional encodings of residue numbers.  These models provide efficient solutions to long-studied problems that are well-suited for implementation in neuromorphic hardware or as a basis for forming hypotheses about visual cortex and entorhinal cortex.

    Bio: Professor Bruno Olshausen is a Professor in the Helen Wills Neuroscience Institute, the School of Optometry, and has a below-the-line affiliated appointment in EECS. He holds B.S. and M.S. degrees in Electrical Engineering from Stanford University, and a Ph.D. in Computation and Neural Systems from the California Institute of Technology. He did his postdoctoral work in the Department of Psychology at Cornell University and at the Center for Biological and Computational Learning at the Massachusetts Institute of Technology. From 1996-2005 he was on the faculty in the Center for Neuroscience at UC Davis, and in 2005 he moved to UC Berkeley. He also directs the Redwood Center for Theoretical Neuroscience, a multidisciplinary research group focusing on building mathematical and computational models of brain function (see http://redwood.berkeley.edu).

    Olshausen's research focuses on understanding the information processing strategies employed by the visual system for tasks such as object recognition and scene analysis. Computer scientists have long sought to emulate the abilities of the visual system in digital computers, but achieving performance anywhere close to that exhibited by biological vision systems has proven elusive. Dr. Olshausen's approach is based on studying the response properties of neurons in the brain and attempting to construct mathematical models that can describe what neurons are doing in terms of a functional theory of vision. The aim of this work is not only to advance our understanding of the brain but also to devise new algorithms for image analysis and recognition based on how brains work.

    Upcoming Events

    Jun
    Fri
    13
    Department of Brain and Cognitive Sciences (BCS)

    Leyla Akay Thesis Defense: When Memory Unravels: How the Alzheimer's disease risk gene APOE4 impacts oligodendrocyte metabolism and myelination

    2:00pm
    Add to CalendarAmerica/New_YorkLeyla Akay Thesis Defense: When Memory Unravels: How the Alzheimer's disease risk gene APOE4 impacts oligodendrocyte metabolism and myelination06/13/2025 2:00 pm06/13/2025 2:00 pmBuilding 46,Singleton Auditorium
    Jun
    Fri
    13
    McGovern Institute for Brain Research

    Symposium Series on Emerging Model Organisms with Tessa Montague

    4:00pm to 5:00pm
    Add to CalendarAmerica/New_YorkSymposium Series on Emerging Model Organisms with Tessa Montague06/13/2025 4:00 pm06/13/2025 5:00 pmBuilding 46,3189
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology