Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. NLM Lecture: Dissecting the role of the habenula-projecting globus pallidus in behavioral reinforcement
research image.jpg
Department of Brain and Cognitive Sciences (BCS)
MIT Colloquium on the Brain and Cognition

NLM Lecture: Dissecting the role of the habenula-projecting globus pallidus in behavioral reinforcement

Speaker(s)
Bo Li, PhD
Add to CalendarAmerica/New_YorkNLM Lecture: Dissecting the role of the habenula-projecting globus pallidus in behavioral reinforcement02/25/2016 9:00 pm02/25/2016 10:30 pm46-3002 Singleton Auditorium
February 25, 2016
9:00 pm - 10:30 pm
Location
46-3002 Singleton Auditorium
Contact
Zella Pirello
Host
Michael Reed
    Description

    The habenula-projecting globus pallidus (GPh), a phylogenetically conserved non-motor output of the basal ganglia, has recently emerged as a key controller of the brain’s reward system. It excites the lateral habenula (LHb) that, in turn, drives inhibition onto dopamine neurons when an outcome is worse than expected, and is thus thought to provide the “prediction error” signal essential for learning to avoid unrewarding actions. However, whether the GPh contributes to such a learning process has never been examined, and consequently how it influences behaviour remains unclear. Here we show that the GPh plays a more fundamental behavioural role than currently believed, as it is critical for reinforcing behaviours that lead to reward as well as discouraging those that do not. We found in a classical conditioning task that individual mouse GPh neurons were inhibited or excited, respectively, when an outcome was better or worse than expected. Mimicking these prediction error signals with optogenetic inhibition or excitation was sufficient to drive positive reinforcement or punishment in a probabilistic switching task. Moreover, cell-type-specific synaptic manipulations revealed that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately respond to positive and negative feedback, respectively. Our results provide the first direct evidence that the GPh conveys both positive and negative evaluation signals to update the expected value of actions during reinforcement learning.

    Speaker Bio

    Bo Li is an Associate Professor at Cold Spring Harbor Laboratory

    Ph.D., The University of British Columbia, 2003

    I have the training, expertise, leadership, and motivation necessary to successfully carry out the proposed research project. I have a broad background in neuroscience, with specific training and expertise in synaptic physiology, as well as molecular, cellular, and behavioral neuroscience. The focus of research in my laboratory has been to understand the link between neural circuits and behavior. We are particularly interested in studying the synaptic and circuit mechanisms underlying cognitive functions such as attention, and learning and memory; as well as synaptic and circuit dysfunction that may underlie the pathophysiology of mental disorders, including autism, schizophrenia, depression, and anxiety disorders. We integrate in vitro and in vivo electrophysiology, imaging, molecular, genetic, optogenetic, and chemogenetic methodologies to probe and manipulate the function of specific neural circuits in rodent brain, and to determine their role in adaptive or maladaptive behavioral responses in various paradigms. We are currently undertaking three major lines of research to investigate: 1) the role of the thalamic reticular nucleus circuitry in sensory processing, attention, and cognitive deficits related to schizophrenia; 2) the role of the lateral habenula circuitry in reward processing and behaviors related to depression; and 3) the role of the amygdala circuitry in fear regulation and anxiety. In particular, our recent studies demonstrate robust fear conditioning-induced synaptic plasticity in the central amygdala inhibitory circuits that may store fear memory and control fear expression.

     

    Upcoming Events

    Jul
    Thu
    10
    The Picower Institute for Learning and Memory

    Neuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience

    9:00am to 1:00pm
    Add to CalendarAmerica/New_YorkNeuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience07/10/2025 9:00 am07/10/2025 1:00 pmBuilding 32,141
    Jul
    Thu
    10
    Department of Brain and Cognitive Sciences (BCS)

    Raul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice

    2:00pm
    Add to CalendarAmerica/New_YorkRaul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice07/10/2025 2:00 pm07/10/2025 2:00 pmBuilding 46,Singleton, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology