Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Neural mechanisms underlying spontaneous and learned behavior in larval zebrafish
McGovern Institute for Brain Research
Special Seminar

Neural mechanisms underlying spontaneous and learned behavior in larval zebrafish

Speaker(s)
Misha Ahrens, PhD
Add to CalendarAmerica/New_YorkNeural mechanisms underlying spontaneous and learned behavior in larval zebrafish03/15/2017 8:00 pm03/15/2017 9:00 pmMcGovern Seminar Room 46-3189
March 15, 2017
8:00 pm - 9:00 pm
Location
McGovern Seminar Room 46-3189
Contact
Naomi Berkowitz
    Description

    An animal’s actions are dependent on its current environment as well as on its past experiences. We sought to identify neural mechanisms underlying two types of history dependence in behavior of larval zebrafish. First, we studied sequences of spontaneous motor actions, where the choice of whether to swim left or right is strongly influenced by past swim patterns. We performed whole-brain imaging to discover groups of neurons that are necessary and sufficient for a short-term memory of turning direction. An excitatory-inhibitory circuit, storing heading direction in sustained activity, enables history-dependent, non-random choices of swim direction to implement an efficient local foraging strategy. Second, we studied a short-term form of motor learning, in which the animals learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. We used whole-brain neuronal imaging and circuit manipulations to discover that the serotonergic dorsal raphe nucleus stores a short-term memory of learned swim vigor, in persistent activity of serotonergic neurons. This learned representation of the “effectiveness of actions” arises from integration of the sensory feedback from individual swim bouts, and transmission to behavior was raphe- and serotonin-dependent. These studies reveal that experience-dependence in spontaneous behavior and motor learning in zebrafish is implemented through combinations of reverberating neural activity and neuromodulation, and demonstrate how whole-brain imaging can be used to discover loci underlying flexible behavior.

    https://www.janelia.org/lab/ahrens-lab

    Speaker Bio

    Misha Ahrens joined Janelia in the fall of 2012, researching systems neuroscience in zebrafish. He completed his BA in mathematics and physics at Cambridge University, and his PhD in computational neuroscience at the Gatsby Computational Neuroscience Unit, at University College London. From 2009 to 2012 he was a Sir Henry Wellcome Postdoctoral Fellow, working in the Engert Lab, at Harvard University.

    https://www.janelia.org/people/misha-ahrens

    Upcoming Events

    Jul
    Thu
    3
    Department of Brain and Cognitive Sciences (BCS)

    Akhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks

    1:00pm
    Add to CalendarAmerica/New_YorkAkhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks07/03/2025 1:00 pm07/03/2025 1:00 pmBuilding 46,Singleton Auditorium, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology