Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Multidimensional Normalization is Optimal for Identification in Natural Scenes
WSG_Image.jpg
Department of Brain and Cognitive Sciences (BCS)
MIT Colloquium on the Brain and Cognition

Multidimensional Normalization is Optimal for Identification in Natural Scenes

Speaker(s)
Wilson S. Geisler, Ph.D.
Add to CalendarAmerica/New_YorkMultidimensional Normalization is Optimal for Identification in Natural Scenes04/13/2017 8:00 pm04/13/2017 9:00 pmSingleton Auditorium 46-3002
April 13, 2017
8:00 pm - 9:00 pm
Location
Singleton Auditorium 46-3002
Contact
Amanda O'Neill
Host
Ted Adelson, Josh McDermott
    Description

    A fundamental everyday visual task is to identify specific target objects within a background scene.  Under natural conditions, both the properties of the background and the amplitude of the target (if present) are generally different on every occasion. To gain some understanding of identification under such natural conditions we determined the amplitude thresholds in natural images of a matched-template observer, as a function of the three local background properties: luminance, contrast, and phase-invariant similarity to the target. We found that threshold (which is equal to the standard deviation of the template response) is a linear separable function (the product) of all three dimensions—“multidimensional Weber’s law.”  This fact poses a serious problem for detecting targets under natural conditions, where both the properties of the background and the target amplitude are uncertain. Specifically, good performance requires a different decision criterion on the template responses for each possible combination of background properties. However, we show that divisively normalizing the template (feature) responses by the product of the locally estimated luminance, contrast, and similarity creates a distribution of template responses that is normal with a standard deviation of 1.0, independent of the background properties. Thus, for any desired false-alarm rate the optimal hit rate can be obtained with a single decision criterion, even under maximum uncertainty. This is just the sort of normalization (gain-control) observed early in the visual system for the dimensions of luminance and contrast, and perhaps for similarity. In psychophysical experiments, we show that human performance is consistent with this normalized matched template observer (which has only a single efficiency parameter). We argue that the rapid and local neural gain-control mechanisms, and the psychophysical laws of masking, are most likely the result of evolving a near optimal solution to identification in natural backgrounds under conditions of high uncertainty.

    Speaker Bio

    Wilson (Bill) Geisler obtained a BA in psychology from Stanford University in 1971 and a PhD in mathematical and experimental psychology from Indiana University. He joined the psychology faculty at the University of Texas in 1975, where he is currently the David Wechsler Regents Chair and director of the Center for Perceptual Systems. He has appointments in Biomedical Engineering and the Institute for Neuroscience. His primary research interests are in vision, computational vision, and visual neuroscience.  His research combines behavioral studies, neurophysiological studies, studies of natural stimuli, and mathematical modeling.  He is best known for his work on how to perform perceptual tasks optimally (the “theory of ideal observers”), on the relationship between the statistical properties of natural stimuli and the design and evolution of the visual system, on the properties of eye movements in natural tasks, and on the relationship between visual performance and the neurophysiology of the visual system.

    Upcoming Events

    Jul
    Thu
    3
    Department of Brain and Cognitive Sciences (BCS)

    Akhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks

    1:00pm
    Add to CalendarAmerica/New_YorkAkhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks07/03/2025 1:00 pm07/03/2025 1:00 pmBuilding 46,Singleton Auditorium, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology