Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. The Molecular & Cellular Neuroscience (MCN) Program's Seminar Series
Pict of Dr. Rachel Wilson .jpeg
Molecular and Cellular Neuroscience (MCN) Program
Seminar

The Molecular & Cellular Neuroscience (MCN) Program's Seminar Series

Speaker(s)
Dr. Rachel Wilson (Harvard Medical School)
Add to CalendarAmerica/New_YorkThe Molecular & Cellular Neuroscience (MCN) Program's Seminar Series03/02/2018 9:00 pm03/02/2018 11:00 pm46-3002 Singleton Auditorium
March 2, 2018
9:00 pm - 11:00 pm
Location
46-3002 Singleton Auditorium
Contact
Charles Moss
    Description

    "Neural Correlates of Orienting Behaviors and Latent Action Biases"

    Speaker Bio

    Rachel Wilson earned an A.B. in chemistry summa cum laude from Harvard College and a Ph.D. in neuroscience from the University of California, San Francisco. She did postdoctoral training at the California Institute of Technology before joining the faculty in the Department of Neurobiology at Harvard Medical School in 2004, where she is now the Martin Family Professor of Basic Research in the Field of Neurobiology.

    The broad goals of Dr. Wilson’s research are (1) to understand key computations that occur in sensory processing and sensorimotor integration, and (2) to describe the cellular, synaptic, and circuit mechanisms underlying these computations. 

    Dr. Wilson’s laboratory uses Drosophila as a model because most of the ~100,000 neurons in the fly brain are uniquely identifiable, digitally searchable, and genetically-addressable. Many neural connections are highly stereotyped, and it is expected that a wiring diagram of the Drosophila brain will be completed within 5 years. Thus, this organism offers the unique opportunity to understand a neuron’s physiology in the context of its connectivity. Because some of the fundamental problems faced by neural systems are likely to be common to all species, many lessons learned from simple brains should generalize to complex brains.

    Dr. Wilson’s research contributions include the discovery that endogenous cannabinoids act as retrograde synaptic signals in the mammalian hippocampus, the first demonstration of single-cell in vivo elec­trophysiological recordings from the Drosophila brain, and a systematic description of many of the computations and physiological mechanisms at work in the Drosophila olfactory system. More recently, her work has laid the foundation for the study of central mechanosensory and thermosensory processing in the brain and “spinal cord” (the ventral nerve cord). Her laboratory is now beginning to tackle the problem of how these sensory systems are integrated in higher brain regions to produce flexible and robust locomotor guidance.

     

    Upcoming Events

    Jul
    Thu
    3
    Department of Brain and Cognitive Sciences (BCS)

    Akhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks

    1:00pm
    Add to CalendarAmerica/New_YorkAkhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks07/03/2025 1:00 pm07/03/2025 1:00 pmBuilding 46,Singleton Auditorium, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology