Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Mechanisms of Self-organization of Neuronal Circuits in the Planarian Nervous System
Department of Brain and Cognitive Sciences (BCS)
Brain Lunch

Mechanisms of Self-organization of Neuronal Circuits in the Planarian Nervous System

Speaker(s)
Deniz Kutay Atabay, Reddien Lab
Add to CalendarAmerica/New_YorkMechanisms of Self-organization of Neuronal Circuits in the Planarian Nervous System03/28/2016 4:00 pm03/28/2016 5:00 pmBrain and Cognitive Sciences Complex, 43 Vassar Street, McGovern Seminar Room 46-3189, Cambridge MA
March 28, 2016
4:00 pm - 5:00 pm
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street, McGovern Seminar Room 46-3189, Cambridge MA
Contact
Julianne Gale Ormerod
    Description

    Formation of tissues and organs during development and regeneration is a highly complex process that comprises diverse local interactions at the molecular and cellular levels, yet mechanisms that integrate biological subunits (e.g., cells) into coherently functioning units or systems (e.g., cell circuits or tissues) are not well understood. Self-organization is a phenomenon where lower level components of a system produce a global architecture or pattern through various local interactions without referring to an inclusive “blueprint” of the final structure. Understanding governing principles of self-organization at the cellular level can provide fundamental insights to various stages of development and maturation of biological systems, such as formation, selective growth and pruning of neuronal circuits as well as acquisition of shape and function. Previous research has shown self-organization of highly complex structures, such as the developing eye using embryonic stem cells grown in a culture environment and with in vivo models focused on ectopic formation of complex structures in various model organisms. However, an experimental approach to study self-organization in its natural setting has been lacking. The planarian eye and the brain offer an unparalleled testing ground as an experimental model to study self-organization. Here, I will present our efforts towards developing a model, involving self-organization and attraction of progenitors into neural circuits, that explains key attributes of nervous system regeneration.

    Upcoming Events

    Jul
    Thu
    10
    The Picower Institute for Learning and Memory

    Neuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience

    9:00am to 1:00pm
    Add to CalendarAmerica/New_YorkNeuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience07/10/2025 9:00 am07/10/2025 1:00 pmBuilding 32,141
    Jul
    Thu
    10
    Department of Brain and Cognitive Sciences (BCS)

    Raul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice

    2:00pm
    Add to CalendarAmerica/New_YorkRaul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice07/10/2025 2:00 pm07/10/2025 2:00 pmBuilding 46,Singleton, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology