Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Mechanisms of experience-dependent neuronal computations
The Picower Institute for Learning and Memory
Special Seminar

Mechanisms of experience-dependent neuronal computations

Speaker(s)
Christine Grienberger, MD, PhD
Add to CalendarAmerica/New_YorkMechanisms of experience-dependent neuronal computations01/27/2020 6:00 pm01/27/2020 7:00 pmSingleton Auditorium, 46-3002
January 27, 2020
6:00 pm - 7:00 pm
Location
Singleton Auditorium, 46-3002
Contact
Brittany Greenough
Host
Li-Huei Tsai and Matthew Wilson
    Description

    The fundamental function of individual neurons is to produce an axonal output by integrating excitatory and inhibitory synaptic inputs. My research sheds light on how changes in this input-output-transformation impact behaviorally relevant brain functions, especially in the context of tasks that require learning. Thus, I have been studying the mouse hippocampal area CA1, as this region is known to be involved in spatial learning. I found that broadly tuned synaptic inhibition is essential for producing the spatially localized firing fields of CA1 place cells (‘place fields’). Inhibition selectively counteracts out-of-field synaptic excitation, thus suppressing the firing of action potentials outside of the neuron’s place field and preserving the sparseness of the spatial code in CA1. Furthermore, I co-discovered a new kind of plasticity, called behavioral timescale synaptic plasticity (BTSP), which is driven by a specific type of dendritic spike, Ca2+ plateau potentials (‘plateaus’), and produces place fields in CA1 neurons. BTSP provides a neural mechanism for one-trial learning as a single plateau is sufficient to modify synaptic strength. My most recent results point towards a fundamental role of BTSP in allowing experiences to shape CA1 representations and, thus, identify plateaus as a key signal that instructs CA1 neurons in how to represent an environment. Taken together, my research provides a mechanistic understanding of how synaptic integration and plasticity shape feature-selective responses of neurons, mediate the formation of experience-dependent representations, and enable neural circuit computations to drive adaptive behaviors.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology