Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. The Hippocampal “Event Code”: Implications from Descartes to Gridworld
Thesis Defense

The Hippocampal “Event Code”: Implications from Descartes to Gridworld

Speaker(s)
Chen Sun, Tonegawa Lab
Add to CalendarAmerica/New_YorkThe Hippocampal “Event Code”: Implications from Descartes to Gridworld04/30/2020 8:00 pm04/30/2020 10:00 pmZoom
April 30, 2020
8:00 pm - 10:00 pm
Location
Zoom
Contact
Julianne Ormerod
    Description

    Abstract: The brain codes continuous spatial, temporal, and sensory changes in daily experience. Recent studies suggest the brain also tracks experience as segmented subdivisions (events), but the neural basis for encoding events remains unclear. Here, I present our recent advances to understand the encoding of distinct events at the single cell level. We designed a novel maze task for mice which permitted the isolation of neural signals tracking “events” as abstract and discrete entities, separate from sensory changes. This maze task was composed of 4 materially indistinguishable lap events. Using this maze, we reported hippocampal CA1 neurons whose activity was modulated not only by spatial location, but also lap number. These “event-specific rate remapping” (ESR) cells remain lap-specific even when the maze length was unpredictably altered within trials, suggesting ESR cells treated lap events as fundamental units. The activity pattern of ESR cells was reused to represent lap events when the maze geometry was altered from square to circle, suggesting it helped transfer knowledge between experiences. ESR activity was separately manipulable from spatial activity, and may therefore constitute an independent hippocampal code: an “event code” dedicated to organizing experience by events as discrete and transferable units. The implications of this event code from the philosophy of Descartes to the solutions to Gridworld problems will be discussed.  

    Join Zoom Meeting
    https://mit.zoom.us/j/96780918350?pwd=V1kwMGhiandNSms5WDIyZXE4K3dpQT09

    Password: 810865

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology