Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Hierarchy and invariance in auditory cortical computation
Department of Brain and Cognitive Sciences (BCS)
Thesis Defense

Hierarchy and invariance in auditory cortical computation

Speaker(s)
Alex Kell, McDermott Lab
Add to CalendarAmerica/New_YorkHierarchy and invariance in auditory cortical computation12/10/2018 7:00 pm12/10/2018 9:00 pmBrain and Cognitive Sciences Complex, 43 Vassar Street, McGovern Seminar Room 46-3189, Cambridge MA
December 10, 2018
7:00 pm - 9:00 pm
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street, McGovern Seminar Room 46-3189, Cambridge MA
Contact
Department of Brain and Cognitive Sciences
    Description

    With ease, we recognize a friend’s voice in a crowd, or pick out the first violin in a concerto. But the effortlessness of everyday perception masks its computational challenge. Perception does not occur in the eyes and ears – indeed, nearly half of primate cortex is dedicated to it. 

    While much is known about peripheral auditory processing, auditory cortex remains poorly understood. This thesis addresses basic questions about the functional and computational organization of human auditory cortex through three studies.

    In the first study we show that a hierarchical neural network model optimized to recognize speech and music does so at human levels, exhibits a similar pattern of behavioral errors, and predicts cortical responses, as measured with fMRI. The multi-task optimization procedure we introduce produces separate music and speech pathways after a shared front end, potentially recapitulating aspects of auditory cortical functional organization. Within the model, different layers best predict primary and non-primary voxels, revealing a hierarchical organization in human auditory cortex. 

    We then seek to characterize the representational transformations that occur across stages of the putative cortical hierarchy, probing for one candidate: invariance to real-world background noise. To measure invariance, we correlate voxel responses to natural sounds with and without real-world background noise. Non-primary responses are substantially more noise-invariant than primary responses. These results illustrate a representational consequence of the potential hierarchical organization of the auditory system.

    Lastly, we explore of the generality of deep neural networks as models of human hearing by simulating many psychophysical and fMRI experiments on the above-described neural network model. The results provide an extensive comparison of the performance characteristics and internal representations of a deep neural network with those of humans. We observe many similarities that suggest that the model replicates a broad variety of aspects of auditory perception. However, we also find discrepancies that suggest targets for future modeling efforts.

     

    Thesis can be found here: https://www.dropbox.com/s/kqyq7q2ejv777o1/kell.thesis.for-committee.pdf?dl=0

     

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology