Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Functional Ultrasound (fUS) Imaging: a new neuroimaging modality for neuroscience
MickaelTanter_IAU.jpg
McGovern Institute for Brain Research
Special Seminar

Functional Ultrasound (fUS) Imaging: a new neuroimaging modality for neuroscience

Speaker(s)
Mickael Tanter, Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL University, Paris, France
Add to CalendarAmerica/New_YorkFunctional Ultrasound (fUS) Imaging: a new neuroimaging modality for neuroscience01/16/2020 7:00 pm01/16/2020 8:00 pmResearch Laboratory of Electronics 36-428
January 16, 2020
7:00 pm - 8:00 pm
Location
Research Laboratory of Electronics 36-428
Contact
Catherine Nunziata
    Description

    In the last twenty years, the progressive introduction of plane or diverging ultrasonic wave transmissions rather than line by line scanning focused beams broke the resolution limits of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography1-2, electromechanical wave imaging, ultrafast Doppler, ultrafast contrast imaging, and even functional ultrasound imaging (fUS imaging) of brain activity introducing Ultrasound as an emerging full-fledged neuroimaging modality.

     

    At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such "human body seismology" provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, ...).

     

    For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound or fUS (functional ultrasound) imaging of brain activity with unprecedented spatial and temporal resolution compared to fMRI. It provides the first modality for imaging of the whole brain activity working on awake and freely moving animals with unprecedented resolutions 3-6 and was also translated recently to clinics7-8.

     

    Finally, we recently demonstrated that it can be combined with 3 µm diameter microbubbles injections in order to provide a first in vivo and non-invasive imaging modality at microscopic scales deep into organs combined with contrast agents by localizing the position of millions of microbubbles at ultrafast frame rates.

    This ultrasound localization microscopy technique solves for the first time the problem of in vivo imaging at microscopic scale the whole brain vasculature 9. Beyond fundamental neuroscience or stroke diagnosis, it will certainly provide new insights in the understanding of tumor angiogenesis, for example combined with PET/CT imaging10.

     

    1. M. Tanter and M. Fink, Ultrafast Imaging in Biomedical Ultrasound, IEEE UFFC, 61(1), pp. 102-119, 2014
    2. M.E. Fernandez-Sanchez et al, Nature, July 2015
    3. Mace et al., Nature Methods, Jun. 2011
    4. Osmanski et al, Nature Comm., Oct. 2014
    5. L.A. Sieu et al, Nature Methods, Jul. 2015
    6. Bergel et al, Nature Comm., in press 2018
    7. Imbault et al, Scientific Reports 2017
    8. Demene et al, Science Translational Medicine, 2017
    9. C.Errico et al, Nature, Dec. 2015
    10. Provost et al, Nature Biomedical Engineering, Feb. 2018
    Speaker Bio

    Mickael Tanter is a research professor of the French National Institute for Health and Medical Research (Inserm), distinguished professor of ESPCI Paris and AXA Chair Professor. He is heading the laboratory Inserm “Physics for Medicine Paris” (Inserm, CNRS, ESPCI Paris), Paris, France. He is also the director of the first Inserm Technology Research Accelerator created in 2016 and dedicated to Biomedical Ultrasound. Mickael Tanter is a world-renowned expert in biomedical ultrasound and wave physics. He authored more than 350 peer-reviewed papers and book chapters and is the recipient of 50 international patent families. In the last 20 years, he co-invented several major innovations in Biomedical Ultrasound: Transient Elastography, Ultrafast Ultrasound and Shear Wave Elastography, functional Ultrasound (fUS) imaging of brain activity and Superresolution Ultrasound based on Ultrasound Localization Microscopy. He received many national and international distinctions (among them the Honored Lecture of the Radiology Society of North America in 2012, the Grand Prize of Medicine and Medical Research of Paris city in 2011, the Grand Prize of Fondation de la Recherche Médicale in 2016 and the Carl Hellmuth Hertz Prize of IEEE Ultrasonics, Ferroelectrics and Frequency Control society in 2017, and the highest distinction of the European Society in Molecular Imaging ESMI in 2018). M. Tanter is also the co-founder of several MedTech companies in Biomedical Ultrasound (Supersonic Imagine, CardiaWave, Iconeus) and is elected member of the European Academy of Science.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology