Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Enhanced Striatal Glutamatergic Function Upon Chronic Antipsychotic Administration
Thesis Defense

Enhanced Striatal Glutamatergic Function Upon Chronic Antipsychotic Administration

Speaker(s)
Amanda Vernon, Heiman Lab
Add to CalendarAmerica/New_YorkEnhanced Striatal Glutamatergic Function Upon Chronic Antipsychotic Administration04/12/2019 6:00 pm04/12/2019 8:00 pmSingelton Auditorium, 46-3002, Brain and Cognitive Sciences Complex, 43 Vassar Street, Cambridge MA
April 12, 2019
6:00 pm - 8:00 pm
Location
Singelton Auditorium, 46-3002, Brain and Cognitive Sciences Complex, 43 Vassar Street, Cambridge MA
Contact
Emily Eckardt
    Description

    Schizophrenia is a psychiatric disorder characterized by multiple clusters of symptoms including positive symptoms, such as hallucinations and delusions, negative symptoms, such as decreased motivation and flattened affect, and cognitive symptoms, such as memory impairment and impaired executive function. Currently available antipsychotics mitigate some symptoms of schizophrenia, particularly the positive symptoms, but there is no preventive treatment nor cure after schizophrenia develops. Efforts to generate more effective antipsychotics are made particularly challenging by the fact that the therapeutic effect of currently prescribed antipsychotics is not well understood and the cell type(s) and brain circuits crucial for beneficial effects have not been conclusively identified. Here we show that chronic antipsychotic administration enhances glutamatergic function in the ventral striatum through translational alterations and increased synaptic function. Cell type-specific mRNA profiling on spiny projection neurons (SPNs) of the direct (dSPNs) and indirect (iSPNs) pathways following chronic antipsychotic administration revealed cell type-specific molecular alterations indicating increases in components of the glutamatergic postsynaptic density. Subsequent functional experiments demonstrated the presence of calcium-permeable AMPARs and increased mEPSC frequency following chronic administration of one especially effective antipsychotic, clozapine. Furthermore, we find that striatal astrocytes also respond to chronic antipsychotic treatment with translational alterations promoting synaptogenesis. Together, these data have identified a core molecular signature of increased glutamatergic transmission in the striatum induced by chronic antipsychotic treatment. This work provides evidence that effective antipsychotics address a lack of glutamatergic drive into the striatum in cases of schizophrenia. Additionally, it suggests that drug development efforts seeking improved antipsychotics may benefit by finding compounds that feature an increased glutamatergic drive into the striatum as a core function.

     

     

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology