Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Efficient coding and the evolution of semantic systems
portrait.jpg
Department of Brain and Cognitive Sciences (BCS)
Special Seminar

Efficient coding and the evolution of semantic systems

Speaker(s)
Noga Zaslavsky
Add to CalendarAmerica/New_YorkEfficient coding and the evolution of semantic systems04/22/2019 4:00 pm04/22/2019 5:00 pm46-5165 (5th floor, MIBR reading room)
April 22, 2019
4:00 pm - 5:00 pm
Location
46-5165 (5th floor, MIBR reading room)
Contact
Federico Chiavazza
    Description

    The forces that govern how languages assign meanings to words have been debated for decades. Recently, it has been suggested that human semantic systems are adapted for efficient communication. However, a major question has been left largely unaddressed: how does pressure for efficiency relate to language evolution?

    In this talk, I will address this open question by grounding the notion of efficiency in a general information-theoretic principle, the Information Bottleneck (IB) principle. Specifically, I will present the hypothesis that languages efficiently encode meanings into words by optimizing the IB tradeoff between the complexity and accuracy of the lexicon. In support of this hypothesis, I will first show that color naming across languages is near-optimally efficient in the IB sense. Furthermore, this finding suggests (1) a theoretical explanation for why inconsistent naming and stochastic categories may be efficient; and (2) that languages may evolve under pressure for efficiency, through an annealing-like process that synthesizes continuous and discrete aspects of previous accounts of color category evolution. This process generates quantitative predictions for how color naming systems may change over time. These predictions are directly supported by an analysis of recent data documenting changes over time in the color naming system of a single language. Finally, I will show that this information-theoretic account generalizes to two qualitatively different semantic domains: names for household containers and animal taxonomies. Taken together, these results suggest that efficient coding — a general principle that also applies to lower-level neural representations — may explain to a large extent the structure and evolution of semantic representations across languages.

    Speaker Bio

    I’m a PhD candidate at the Center for Brain Sciences at the Hebrew University, advised by Naftali Tishby, and a visiting graduate student at UC Berkeley, hosted by Terry Regier. My research aims to understand language and cognition from first principles, building on ideas and methods from machine learning and information theory. I’m particularly interested in computational principles that can account for the ability to maintain efficient semantic representations for learning and communication in complex environments. I believe that such principles could advance our understanding of human cognition and guide the development of human-like artificial intelligence.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology