Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Distinct timescales of information processing across cortex
2.21 - 2.22 - Caroline Runyan - image001.jpg.jpeg
Department of Brain and Cognitive Sciences (BCS)
Seminar

Distinct timescales of information processing across cortex

Speaker(s)
Caroline Runyan, Ph.D.
Add to CalendarAmerica/New_YorkDistinct timescales of information processing across cortex02/21/2017 2:30 pm02/21/2017 3:30 pmSingleton Auditorium 46-3002
February 21, 2017
2:30 pm - 3:30 pm
Location
Singleton Auditorium 46-3002
Contact
Federico Chiavazza
    Description

    **Faculty Candidate - Systems Neuroscience**

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over milliseconds, whereas in association cortex behavioral choices can require the maintenance of information over seconds. It is poorly understood how the cortex achieves such diverse timescales of information coding. While recent work has identified different timescales in features intrinsic to individual neurons, the timescales of information coding in populations of neurons have not been studied, and population codes have not been compared in depth across cortical regions. I will discuss our recent findings that population codes are essential to achieve long and diverse coding timescales, and that codes differ fundamentally between sensory and association cortices. We compared coding for sensory stimuli and behavioral choices in auditory cortex (AC) and posterior parietal cortex (PPC) as mice performed a sound localization task. Information about the auditory stimulus was present in AC but not PPC, whereas both regions contained information about the mouse’s choice. Although both regions coded information by tiling in time neurons that were transiently informative for less than ~200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among PPC neurons was strong, extended over long time lags, and contributed to a long timescale population code characterized by consistent representations of choice lasting over two seconds. In contrast, coupling among AC neurons was weak, shorter-lived, and resulted in moment-to-moment fluctuations in stimulus and choice information. Our results suggest that population coupling is a variable property that affects the timescale of information coding: relatively uncoupled activity in sensory cortex is key for signals that change rapidly to code temporally variable stimuli, whereas highly coupled activity in association cortex appears critical to form a consistent signal from which temporally integrated information can be read out instantaneously to drive behavior. Finally, I will discuss plans for my future work, to study communication between cortical networks, and the circuit mechanisms underlying its modulation by behavioral context and brain state.

    Upcoming Events

    Jul
    Thu
    3
    Department of Brain and Cognitive Sciences (BCS)

    Akhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks

    1:00pm
    Add to CalendarAmerica/New_YorkAkhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks07/03/2025 1:00 pm07/03/2025 1:00 pmBuilding 46,Singleton Auditorium, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology