Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Decoding Observational Learning: A Circuit Level Analysis of the Social Brain
Department of Brain and Cognitive Sciences (BCS)
Thesis Defense

Decoding Observational Learning: A Circuit Level Analysis of the Social Brain

Speaker(s)
Stephen Allsop, Tye Lab
Add to CalendarAmerica/New_YorkDecoding Observational Learning: A Circuit Level Analysis of the Social Brain04/25/2016 8:00 pm04/25/2016 10:00 pmBrain and Cognitive Sciences Complex, 43 Vassar Street, Picower Seminar Room 46-3310, Cambridge MA
April 25, 2016
8:00 pm - 10:00 pm
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street, Picower Seminar Room 46-3310, Cambridge MA
Contact
Julianne Gale
    Description

    The ability to engage in appropriate social interaction is a critical component of daily life that requires integration of multiple neural processes and can be perturbed in numerous psychiatric diseases (Adolphs et al. 2003; Frith et al. 2008). One approach to begin understanding how the brain supports a complex array of social behaviors is to study innate, evolutionarily conserved social behaviors. Observational fear learning is one such social behavior that offers a distinct advantage for survival and is thus highly conserved across various species including rodents (Heyes et al. 1990; Kavaliers et al. 2001), monkeys (Mineka et al. 1984), and humans (Olsson et al. 2007). The data presented in this thesis combines in vivo electrophysiology, optogenetics, and rodent behavior in order to answer a number of questions about the role of the anterior cingulate cortex (ACC) and the amygdala in observational fear learning. We show that both the ACC and the amygdala contain neurons that show conditioned responses to the cue and are therefore neural correlates of observational fear learning. We photoidentify neurons within the ACC-BLA network and show that the ACC-BLA network has an enhanced representation of cue information when compared to out of network neurons. In addition, we show that ACC neurons that project to the BLA encode cue information. Next, we inhibit ACC input to the BLA during the cue and show that this impairs observational learning but not classical fear conditioning. Further, inhibition of ACC input to the BLA changes the cue response of a subset of BLA neurons. Lastly, we show that ACC input to the BLA is necessary for normal social interaction. Together, this data provides the first circuit level analysis of observational fear learning. It establishes that the transfer of cue information from the ACC to the BLA plays a causal role in enabling observational learning and that this same input is needed for general social behavior.

    Upcoming Events

    Jul
    Thu
    10
    The Picower Institute for Learning and Memory

    Neuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience

    9:00am to 1:00pm
    Add to CalendarAmerica/New_YorkNeuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience07/10/2025 9:00 am07/10/2025 1:00 pmBuilding 32,141
    Jul
    Thu
    10
    Department of Brain and Cognitive Sciences (BCS)

    Raul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice

    2:00pm
    Add to CalendarAmerica/New_YorkRaul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice07/10/2025 2:00 pm07/10/2025 2:00 pmBuilding 46,Singleton, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology