Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. CBMM Virtual Seminar: Marco Baroni
marco-compositionality-mit-figure_1.jpg
Center for Brains, Minds and Machines (CBMM)
Seminar

CBMM Virtual Seminar: Marco Baroni

Add to CalendarAmerica/New_YorkCBMM Virtual Seminar: Marco Baroni06/23/2020 6:00 pm06/23/2020 7:00 pmZoom -
June 23, 2020
6:00 pm - 7:00 pm
Location
Zoom -
Contact
Jean Lawrence
    Description

    Title:
    Is compositionality over-rated? A view from emergent neural network language analysis
    Abstract:
    Compositionality is the property whereby linguistic expressions that denote new composite meanings are derived by a rule-based combination of expressions denoting their parts. Linguists agree that compositionality plays a central role in natural language, accounting for its ability to express an infinite number of ideas by finite means.
    "Deep" neural networks, for all their impressive achievements, often fail to quickly generalize to unseen examples, even when the latter display a predictable composite structure with respect to examples the network is already familiar with. This has led to interest in the topic of compositionality in neural networks: can deep networks parse language compositionally? how can we make them more sensitive to compositional structure? what does "compositionality" even mean in the context of deep learning?
    I would like to address some of these questions in the context of recent work on language emergence in deep networks, in which we train two or more networks endowed with a communication channel to solve a task jointly, and study the communication code they develop. I will try to be precise about what "compositionality" mean in this context, and I will report the results of proof-of-concept and larger-scale experiments suggesting that (non-circular) compositionality is not a necessary condition for good generalization (of the kind illustrated in the figure). Moreover, I will show that often there is no reason to expect deep networks to find compositional languages more "natural" than highly entangled ones. I will conclude by suggesting that, if fast generalization is what we care about, we might as well focus directly on enhancing this property, without worrying about the compositionality of emergent neural network languages.
     
    Please click the link below to join the webinar: 
    https://mit.zoom.us/j/93213662313?pwd=N0F2eXUxT1gvRklCeFdDVzBZd0N5Zz09
    Password: brains

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology