Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. CBMM Special Seminar: Beyond Empirical Risk Minimization: the lessons of deep learning
mb.jpg
Center for Brains, Minds and Machines (CBMM)
Seminar

CBMM Special Seminar: Beyond Empirical Risk Minimization: the lessons of deep learning

Add to CalendarAmerica/New_YorkCBMM Special Seminar: Beyond Empirical Risk Minimization: the lessons of deep learning10/28/2019 8:00 pm10/28/2019 9:00 pmSingleton Auditorium - 43 Vassar Street, Cambridge MA 02139
October 28, 2019
8:00 pm - 9:00 pm
Location
Singleton Auditorium - 43 Vassar Street, Cambridge MA 02139
Contact
Jean Lawrence
    Description

    Title: Beyond Empirical Risk Minimization: the lessons of deep learning
    Abstract: "A model with zero training error is  overfit to the training data and  will typically generalize poorly"  goes statistical textbook wisdom.  Yet, in modern practice, over-parametrized deep networks with   near  perfect  fit on  training data still show excellent test performance.  This apparent  contradiction points to troubling cracks in the conceptual foundations of machine learning. While classical analyses of Empirical Risk Minimization rely on balancing the  complexity of  predictors with  training error, modern models are best described by interpolation. In that paradigm  a predictor is chosen by minimizing (explicitly or implicitly) a norm corresponding to a certain inductive bias over a space of functions that  fit the training data exactly. I will discuss the nature of the challenge to our understanding of machine learning and point the way forward to first analyses that account for the empirically observed phenomena.  Furthermore, I will show how  classical and modern models can  be unified within a single  "double descent" risk curve,  which subsumes the classical U-shaped bias-variance trade-off.
    Finally, as an example of a particularly interesting inductive bias, I will show evidence that deep  over-parametrized autoencoders networks, trained with SGD, implement a form of associative memory with training examples as attractor states.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology