Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. CBMM Brains, Minds, and Machines Seminar Series: Compositional Generative Networks & Adversarial Examiners: Beyond the Limitations of Current AI
yuille_crop.jpg
Center for Brains, Minds and Machines (CBMM)
Special Seminar

CBMM Brains, Minds, and Machines Seminar Series: Compositional Generative Networks & Adversarial Examiners: Beyond the Limitations of Current AI

Speaker(s)
Prof. Alan L. Yuille (JHU)
Register
Add to CalendarAmerica/New_YorkCBMM Brains, Minds, and Machines Seminar Series: Compositional Generative Networks & Adversarial Examiners: Beyond the Limitations of Current AI 05/04/2021 6:30 pm05/04/2021 8:00 pmHosted via Zoom
May 4, 2021
6:30 pm - 8:00 pm
Location
Hosted via Zoom
Contact
Contact CBMM
    Description

    Please note the change in start time, this talk will start at 2:30 PM (ET) on May 4, 2021.

    Abstract:  Current AI visual algorithms are very limited compared to the robustness and flexibility of the human visual system. These limitations, however, are often obscured by the standard performance measures (SPMs) used to evaluate vision algorithms which favor data-driven methods. SPMs, however, are problematic due to the combinatorial complexity of natural images and lead to unrealistic expectations about the effectiveness of current algorithms. We argue that tougher performance measures, such as out-of-distribution testing and adversarial examiners, are required to realistically evaluate vision algorithms and hence to encourage AI vision systems which can achieve human level performance. We illustrate this by studying object classification where the algorithms are trained on standard datasets which have limited occlusion but are tested on datasets where the objects are severally occluded (out-of-distribution testing) and/or where adversarial patches are placed in the images (adversarial examiners). We show that standard Deep Nets perform badly under these types of tests but Generative Compositional Nets, which perform approximate analysis by synthesis, are much more robust.

    ---

    This talk will be hosted remotely via Zoom.

    Zoom link: https://mit.zoom.us/j/95505708173?pwd=cjBLVlZWYXNXcDBIanRKMWZNNXZuZz09
    Passcode: 522130

    Speaker Bio

    Professor Alan L. Yuille is a Bloomberg Distinguished Professor of Cognitive Science and Computer Science at Johns Hopkins University. He directs the research group on Compositional Cognition, Vision, and Learning. He is affiliated with the Center for Brains, Minds and Machines, and the NSF Expedition in Computing, Visual Cortex On Silicon.

     

    Alan Yuille received a BA degree in mathematics from the University of Cambridge in 1976. His Ph.D. on theoretical physics, supervised by Prof. S.W. Hawking, was approved in 1981. He was a research scientist in the Artificial Intelligence Laboratory at MIT and the Division of Applied Sciences at Harvard University from 1982 to 1988. He served as an assistant and associate professor at Harvard until 1996. He was a senior research scientist at the Smith-Kettlewell Eye Research Institute from 1996 to 2002. He was a full professor of Statistics at the University of California, Los Angeles, as a full professor with joint appointments in computer science, psychiatry, and psychology. He moved to Johns Hopkins University in January 2016. His research interests include computational models of vision, mathematical models of cognition, medical image analysis, and artificial intelligence and neural networks.

     

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology