Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Automated Discovery and Learning of Complex Movement Behaviours
Department of Brain and Cognitive Sciences (BCS)
Seminar

Automated Discovery and Learning of Complex Movement Behaviours

Speaker(s)
Igor Mordatch, PhD
Add to CalendarAmerica/New_YorkAutomated Discovery and Learning of Complex Movement Behaviours03/29/2016 2:00 pm03/29/2016 3:00 pmPicower Seminar Room #46-3310
March 29, 2016
2:00 pm - 3:00 pm
Location
Picower Seminar Room #46-3310
Contact
Federico Chiavazza
    Description

    **Faculty Search - Cognitive Processes**

    In order to create truly autonomous physical robots, understand the underlying principles behind human movement, or tell narratives in animated films and interactive games, it is necessary to synthesize movement behaviours with the same wide variety, richness and complexity observed in humans and other animals. Moreover, these behaviours should be discovered automatically from only a few core principles, and not be a result of extensive manual engineering or a mimicking of demonstrations. In this talk at the intersection of robotics, computer graphics and biomechanics, I will show work on novel trajectory and policy optimization methods that give rise to a range of behaviours such getting up, climbing, moving objects, hand manipulation, acrobatics, and various cooperative actions involving multiple characters all in a single system. The resulting movements can be used to successfully control a physical bipedal robot and coupled with detailed models of human physiology, motions that match real human motion can be produced de novo, giving the predictive power to conduct virtual biomechanics experiments. The approach is fully automatic, based on general neural network policy representations and does not require domain knowledge specific to each behaviour, pre-existing examples or motion capture data. Although discovery and learning are computationally-expensive and rely on cloud and GPU computing, the interactive animation can run in real-time on any hardware once the controllers are learned.

    Speaker Bio

    Igor Mordatch is a post-doctoral fellow working with professor Pieter Abbeel at University of California, Berkeley. He received his PhD at University of Washington under supervision of Emanuel Todorov and Zoran Popovic and undergraduate degree in Computer Science and Mathematics at University of Toronto. He worked as a visiting researcher at Stanford University and Pixar Research. His research interests lie in the development and use of optimal control and machine learning techniques for robotics, computer graphics, and biomechanics.

    Upcoming Events

    Jul
    Thu
    10
    The Picower Institute for Learning and Memory

    Neuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience

    9:00am to 1:00pm
    Add to CalendarAmerica/New_YorkNeuroblox Invited Talks & Discussions: New Ideas in Translational Neuroscience07/10/2025 9:00 am07/10/2025 1:00 pmBuilding 32,141
    Jul
    Thu
    10
    Department of Brain and Cognitive Sciences (BCS)

    Raul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice

    2:00pm
    Add to CalendarAmerica/New_YorkRaul Mojica Soto-Albors Thesis Defense: Discovery and characterization of plateau potentials in cortical neurons of awake mice07/10/2025 2:00 pm07/10/2025 2:00 pmBuilding 46,Singleton, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology