Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Algorithms for learning to induce programs
Thesis Defense

Algorithms for learning to induce programs

Speaker(s)
Kevin Ellis (Thesis Advisor: Armando Solar-Lezama)
Add to CalendarAmerica/New_YorkAlgorithms for learning to induce programs06/12/2020 5:00 pm06/12/2020 6:00 pmZoom
June 12, 2020
5:00 pm - 6:00 pm
Location
Zoom
Contact
Julianne Ormerod
    Description

    The future of machine learning should have a knowledge representation that supports, at a minimum, several features: Expressivity, interpretability, the potential for reuse by both humans and machines, while also enabling sample-efficient generalization.  Here we argue that programs--i.e., source code--are a knowledge representation which can contribute to the project of capturing these elements of intelligence.  This research direction however requires new program synthesis algorithms which can induce programs solving a range of AI tasks.  This program induction challenge confronts two primary obstacles: the space of all programs is infinite, so we need a strong inductive bias or prior to steer us toward the correct programs; and even if we have that prior, effectively searching through the vast combinatorial space of all programs is generally intractable.  We introduce algorithms that learn to induce programs, with the goal of addressing these two primary obstacles.  Focusing on case studies in vision, computational linguistics, and learning-to-learn, we develop an algorithmic toolkit for learning inductive biases over programs as well as learning to search for programs, drawing on probabilistic, neural, and symbolic methods.  Together this toolkit suggests ways in which program induction can contribute to AI, and how we can use learning to improve program synthesis technologies.

     

    Join Zoom Meeting
    https://mit.zoom.us/j/99398649498?pwd=VmdKUU1WbzBlL2tqTW9WUGZLb1Bpdz09

    Password: 939467

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology