Featured News
A recent study from the McGovern Institute for Brain Research shows how interests can modulate language processing in children’s brains and paves the way for personalized brain research. The paper, which appears in Imaging Neuroscience, was conducted in the lab of BCS professor and McGovern Institute investigator John Gabrieli, and led by senior author Anila D’Mello, a recent McGovern postdoc.
Featured News
Nearly 50 years ago, neuroscientists discovered cells within the brain’s hippocampus that store memories of specific locations. These cells also play an important role in storing memories of events, known as episodic memories. While the mechanism of how place cells encode spatial memory has been well-characterized, it has remained a puzzle how they encode episodic memories.
A new model developed by MIT researchers explains how those place cells can be recruited to form episodic memories, even when there’s no spatial component. According to this model, place cells, along with grid cells found in the entorhinal cortex, act as a scaffold that can be used to anchor memories as a linked series.
Featured News
The roundworm C. elegans is a simple animal whose nervous system has exactly 302 neurons. Each of the connections between those neurons has been comprehensively mapped, allowing researchers to study how they work together to generate the animal’s different behaviors.
Steven Flavell, an MIT associate professor of brain and cognitive sciences and investigator with the Picower Institute for Learning and Memory at MIT and the Howard Hughes Medical Institute, uses the worm as a model to study motivated behaviors such as feeding and navigation, in hopes of shedding light on the fundamental mechanisms that may also determine how similar behaviors are controlled in other animals.