Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

News

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. News
  3. Picower neuroscientists reveal fundamental discovery about cortical neurons
December 11, 2014

Picower neuroscientists reveal fundamental discovery about cortical neurons

by
Picower Institute for Learning and Memory
Image
neurons-primary-visual-cortex.png
Neurons in the primary visual cortex of an awake mouse

The two major types of neuron in the brain’s cerebral cortex are connected by intricate cortical circuits that process information. Excitatory neurons, which comprise 80 percent of all neurons in this region, increase activity in target cells. The other 20 percent of neurons are inhibitory, producing the opposite effect.

Inhibitory neurons (interneurons) have long been recognized as critical to understanding distinct kinds of information processing. Specific subtypes of interneurons can regulate response gain (the extent of reaction to stimuli) in excitatory neurons or shape response selectivity in target cells. In a new study scheduled appearing Dec. 11 in Nature Communications, Sami El-Boustani and Mriganka Sur of the Picower Institute for Learning and Memory hypothesize that a particular type of interneuron may influence responses in a context-dependent manner.

Arithmetic controls response

Inhibitory neurons in the visual cortex use division and subtraction to control computations performed by their target cells. Several previous studies suggested that one of the well-defined classes of interneuron, parvalbumin-expressing (PV +) cells, regulates response gain via divisive inhibition, whereas the other major class, somatostatin-positive (SOM +) cells, controls response selectivity via subtractive inhibition.

Divisive inhibition can occur during a range of functions including directed visual attention, orientation, multisensory integration, and value estimation. Subtractive inhibition is thought to sharpen neuronal selectivity, possibly increasing discrimination capability and therefore perhaps enhancing behavioral performance. Based on the findings of earlier research, these functions were thought to be native properties of these cell types, based on structure, connections, and biophysics.

Innovative techniques yield new findings

More recent studies, including an in-depth examination by El-Boustani and Sur, indicate that SOM + cells in particular are a key component of the underlying mechanisms that dictate functionality. In order to evoke different response dynamics in interneurons and investigate the nature of inhibition, the Picower neuroscientists employed “an innovative combination of novel visual stimuli, precisely-timed single-pulse optogenetic stimulation, and large-scale recording via two-photon calcium imaging of targeted neuronal responses in mice,” explains Sur, the Newton Professor of Neuroscience and director of the Simons Center for the Social Brain. Using briefly flashed visual stimuli and short pulses rather than prolonged optogenetic activation, the researchers were able to define the response times of PV + and SOM + neurons compared with their target cells, as well as isolate the inhibitory effect of these two types of neuron.

El-Boustani, a postdoctoral fellow in the Sur lab who led the study, was able to show that SOM + neurons can perform either divisive inhibition and regulate response gain or subtractive inhibition and control response selectivity. He found that when stimulation activates the SOM + cells at the same time as their target cells, as is the case when probed with large visual stimuli, they divide responses. When activation of the target cells occurs at a different time — sooner when they respond to small visual stimuli — the SOM + neurons subtract responses. “So neuronal functionality is dynamic; it is governed by firing coordination and the overlap of response timing in the circuits and their target cells,” explains El-Boustani.

The MIT scientists’ ability to demonstrate dramatic and distinct response-dependent switching in the live brain suggests that interneuron functionality is not an immutable property of each cell type, but a consequence of more complex dynamics within cortical networks. Since cortical inhibitory neurons mediate not only information processing but also play a critical role in brain disorders like autism, schizophrenia, and epilepsy, this discovery contributes significant insights to enhance understanding of normal and abnormal brain functionality. 

Read the Original Article
Don't miss our next newsletter!
Sign Up

Footer menu

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower
Brain and Cognitive Sciences

MIT Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 46-2005

Cambridge, MA 02139-4307 | (617) 253-5748

For Emergencies | Accessibility

Massachusetts Institute of Technology