Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

News

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. News
  3. How humans continuously adapt while walking stably
November 25, 2024

How humans continuously adapt while walking stably

by
Jarret Bencks
Image
Feet walking on a trail

Researchers have developed a model that explains how humans adapt continuously during complex tasks, like walking, while remaining stable.

The findings were detailed in a paper published in the November 2024 edition of the journal Nature Communications authored by Nidhi Seethapathi, an assistant professor in MIT’s Department of Brain and Cognitive Sciences; Barrett C. Clark, a robotics software engineer at Bright Minds Inc.; and Manoj Srinivasan an associate professor in the Department of Mechanical and Aerospace Engineering at Ohio State University.

In episodic tasks, like reaching for an object, errors during one episode do not affect the next episode. In tasks like locomotion, errors can have a cascade of short-term and long-term consequences to stability unless they are controlled. This makes the challenge of adapting locomotion in a new environment  more complex.

"Much of our prior theoretical understanding of adaptation has been limited to episodic tasks, such as reaching for an object in a novel environment," Seethapathi says. "This new theoretical model captures adaptation phenomena in continuous long-horizon tasks in multiple locomotor settings."

To build the model, the researchers identified general principles of locomotor adaptation across a variety of task settings, and  developed a unified modular and hierarchical model of locomotor adaptation, with each component having its own unique mathematical structure.

The resulting model successfully encapsulates how humans adapt their walking in novel settings such as on a split-belt treadmill with each foot at a different speed, wearing asymmetric leg weights, and wearing  an exoskeleton. The authors report that the model successfully reproduced human locomotor adaptation phenomena across novel settings in ten prior studies and correctly predicted the adaptation behavior observed in two new experiments conducted as part of the study.

The model has potential applications in sensorimotor learning, rehabilitation, and wearable robotics.

"Having a model that can predict how a person will adapt to a new environment has immense utility for engineering better rehabilitation paradigms and wearable robot control," Seethapathi says. "You can think of a wearable robot itself as a new environment for the person to move in, and our model can be used to predict how a person will adapt for different robot settings. Understanding such human-robot adaptation is currently an experimentally intensive process, and our model  could help speed up the process by narrowing the search space."
 

Don't miss our next newsletter!
Sign Up

Footer menu

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower
Brain and Cognitive Sciences

MIT Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 46-2005

Cambridge, MA 02139-4307 | (617) 253-5748

For Emergencies | Accessibility

Massachusetts Institute of Technology