Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Structured learning and inference with neural networks and generative models.
Department of Brain and Cognitive Sciences (BCS)
Thesis Defense

Structured learning and inference with neural networks and generative models.

Speaker(s)
Owen Lewis, Poggio Lab
Add to CalendarAmerica/New_YorkStructured learning and inference with neural networks and generative models. 10/30/2018 7:00 pm10/30/2018 8:30 pmBrain and Cognitive Sciences Complex, 43 Vassar Street, Singleton Auditorium and 3rd floor Atrium, Cambridge MA
October 30, 2018
7:00 pm - 8:30 pm
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street, Singleton Auditorium and 3rd floor Atrium, Cambridge MA
Contact
Department of Brain and Cognitive Sciences
    Description

    Neural networks and probabilistic models have different and in many ways complementary strengths and weaknesses: neural networks are flexible and support efficient inference, but rely on large quantities of labeled training data. Probabilistic models can learn from fewer examples, but in many cases remain limited by time-consuming inference algorithms. Thus, both classes of models have drawbacks that both limit their engineering applications and prevent them from being fully satisfying as process models of human learning. This thesis aims to address this state of affairs from both directions, exploring case studies where we make neural networks that learn from less data, and in which we design more efficient inference procedures for generative models.

    First, we explore recurrent neural networks that learn list-processing procedures (sort, reverse, etc.), and show how ideas from type theory and programming language theory can be used to design a data augmentation scheme that enables effective learning from small datasets. Next, we show how error-driven proposal mechanisms can speed up stochastic search for generative model inversion, first developing a symbolic model for inferring Boolean functions and Horn clause theories, and then a general-purpose neural network model for doing inference in continuous domains such as inverse graphics.

    Upcoming Events

    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology