Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. SCSB Lunch Series: Understanding functional connectivity in the mammalian brain
SCSB Lunch Series: Understanding functional connectivity in the mammalian brain
Simons Center for the Social Brain

SCSB Lunch Series: Understanding functional connectivity in the mammalian brain

Add to CalendarAmerica/New_YorkSCSB Lunch Series: Understanding functional connectivity in the mammalian brain11/19/2021 12:00 pm11/19/2021 1:00 pm,
November 19, 2021
12:00 pm - 1:00 pm
Location
,
Contact
asokhina@mit.edu
    Description

    Date: Friday, November 19, 2021
    Time: 12:00pm – 1:00pm
    Location: Zoom meeting – Registration Required
    Register in advance for this webinar: click here
    * After registering, you will receive a confirmation email containing information on how to join the webinar.

    Speaker: Alan Jasanoff, Ph.D.
    Affiliation: Professor, Biological Engineering, Brain and Cognitive Sciences, Nuclear Science and Engineering; Associate Investigator, McGovern Institute; Director, Center for Neurobiological Engineering

    Talk title: Understanding functional connectivity in the mammalian brain

    Abstract: The correlational structure of brain activity dynamics, known as functional connectivity, is often taken to reveal intrinsic properties of neural processing. Functional connectivity measures observed during spontaneous activity are candidate biomarkers for neurodevelopmental disorders including autism, but the physiological bases of these measures are poorly understood. In the first part of my talk, I will discuss evidence that resting state functional connectivity of the mammalian brain derives in part from interactions with extrinsic sense organs. Central or peripheral inactivation of vibrissa-mediated input in awake rats strongly diminishes somatosensory functional connectivity, even when no overt stimuli are present. The same neural activity correlations are sharply reduced in a rat model of fragile X syndrome, an autism spectrum disorder. Fragile X rats are also insensitive to vibrissa inactivation, suggesting that part of the neuroimaging phenotype in this autism model arises from abnormalities in the peripheral sensory channel. In the second part of my talk, I will discuss an experimental tool our laboratory has developed to place functional connectivity findings on a physiological basis. In combination with tract-tracing viruses, a genetically encoded activity probe called NOSTIC provides a means for defining input-output relationships across the brain. We demonstrate this capability for mapping circuit function in rats and plan to use it for analysis of social stimulus processing in nonhuman primates.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology