Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Neuronal algorithms for extracting multiple percepts from a single stimulus
The Picower Institute for Learning and Memory
MIT Colloquium on the Brain and Cognition

Neuronal algorithms for extracting multiple percepts from a single stimulus

Speaker(s)
Mathew E. Diamond, PhD
Add to CalendarAmerica/New_YorkNeuronal algorithms for extracting multiple percepts from a single stimulus04/22/2021 8:00 pm04/22/2021 9:00 pmZoom Webinar
April 22, 2021
8:00 pm - 9:00 pm
Location
Zoom Webinar
Contact
Brittany Greenough
Host
Hector de Jesus-Cortes
    Description

    Zoom Link: https://mit.zoom.us/j/96675737071

    Title: Neuronal algorithms for extracting multiple percepts from a single stimulus

    Abstract: When we consider the processing of a tactile stimulus, it is natural to focus on what the stimulus feels like and how the perceived features are encoded by neurons. But a second percept, explicitly or implicitly, accompanies the tactile experience – the feeling of time occupied by that stimulus. To explore the connection between stimulus perception and time perception, we begin with human and rat psychophysics. When subjects judge the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing stimulus intensity leads to increasing perceived duration. Symmetrically, increasing vibration duration leads to increasing perceived intensity. From this relationship, we build a computational framework where the vibration-evoked firing early in the processing stream is accumulated by two integrators, in parallel, each integrator giving rise to a corresponding percept (intensity and duration). This framework makes predictions for the perceptual effects – on both intensity and duration – of direct manipulation of firing in sensory cortex, which we verify by optogenetics in rats. However, just when everything begins to make sense, the story becomes more complex: a subtle change in the physical features of the tactile stimulus causes the engagement of a very different pathway for the perception of time. We conclude that the mechanisms underlying the feeling of stimulus duration are multiple and are adaptable to stimulus properties.

    Additional Info

    The MIT Colloquium on the Brain and Cognition is a lecture series held weekly during the academic year and features a wide array of speakers from all areas of neuroscience and cognitive science research. The social teas that follow these colloquia bring together students, staff, and faculty to discuss the talk, as well as other research activities within Building 46, at MIT, and around the world. This event is co-sponsored by the Department of Brain and Cognitive Sciences, the McGovern Institute for Brain Research, and the Picower Institute for Learning and Memory at MIT. Colloquia are open to the community, and are held in MIT's Building 46, Room 3002 (Singleton Auditorium) at 4:00PM with a reception to follow.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology