
Neural Circuits Underlying Positive and Negative Valence
Description
The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviors ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviors. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behavior.
Speaker Bio
Kay M. Tye received her bachelor’s degree in Brain and Cognitive Sciences from MIT in 2003, and earned her PhD in 2008 at UCSF with Patricia Janak. Her thesis work was supported by the National Science Foundation and recognized with the Lindsley Prize in Behavioral Neuroscience as well as the Weintraub Award in Biosciences. She completed her postdoctoral training with Karl Deisseroth at Stanford University in 2011, with support from an NRSA from NIMH. She became an Assistant Professor at MIT in 2012, and has since been recognized with the NIH Director’s New Innovator Award, Technology Review’s Top 35 Innovators under 35, and has been named a Whitehall, Klingenstein and Sloan Foundation Fellow.