Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Mechanisms of Self-Organization in Planarian Regeneration
Thesis Defense

Mechanisms of Self-Organization in Planarian Regeneration

Speaker(s)
Kutay Deniz Atabay, Reddien Lab
Add to CalendarAmerica/New_YorkMechanisms of Self-Organization in Planarian Regeneration04/09/2019 6:00 pm04/09/2019 8:00 pmWhitehead Institute Auditorium, 455 Main St, Cambridge MA
April 9, 2019
6:00 pm - 8:00 pm
Location
Whitehead Institute Auditorium, 455 Main St, Cambridge MA
Contact
Emily Eckardt
    Description

    There is an unbreakable link between shape and function. In biology, the architecture of cells, tissues and organisms, that have evolved adapting to the world around them, translate into specific functional outcomes. Self-organization is an adaptive, non-linear and dynamic process, where diverse ordered patterns emerge from an initially disordered and noisy state through local interactions between the elements of a system. This can lead to the fascinating biological diversity and functional complexity in such systems. Unwavering storms on the surface of Jupiter, patterns on the wing of a butterfly, a regenerating planarian eye, development of a neuronal circuit in the human brain can all be studied systematically using the conceptual tools derived from the field of self-organization. Here, I sought to address a central, but understudied, problem in animal regeneration: How do regenerative progenitors organize into complex replacement structures in the context of adult anatomy? I used the planarians as a system for studying regenerative progenitors and focused on eye regeneration to elucidate the mechanisms. I found that selforganization has a major role in determining the behavior of regenerative progenitors. This work revealed three properties that govern regenerative progenitor behavior, and these three properties in concert explain many previously mysterious aspects of how regeneration works: (i) selforganization, (ii) an extrinsic migratory target for progenitors, and (iii) a broad progenitor specification zone that allows progenitors to be targeted into self-organizing systems even if they are transiently in incorrect locations during the process of regeneration. These components yield a model with broad explanatory and predictive power. As an example, we were able to generate wild-type animals with 3, 4, or 5 eyes instead of 2 by simple manipulations of the system using the model developed. Remarkably, the extra eyes were stably maintained throughout the life of the animal, resulting in wild-type animals with an alternative and stable anatomical state. This model prominently incorporates self-organizing principles, which have been little explored in regeneration. The new conceptual model with broad explanatory power allowed us to address some of the fundamental pervious mysteries of regeneration.

     

    https://www.dropbox.com/s/ibzlzej7z8m925z/KDAtabay_Thesis_Final.pdf?dl=0

    Upcoming Events

    Jun
    Wed
    11
    McGovern Institute for Brain Research

    ODIN@McGovern Workshop

    9:30am to 5:00pm
    Add to CalendarAmerica/New_YorkODIN@McGovern Workshop 06/11/2025 9:30 am06/11/2025 5:00 pmBuilding 46,3189
    Jun
    Fri
    13
    McGovern Institute for Brain Research

    Symposium Series on Emerging Model Organisms with Tessa Montague

    4:00pm to 5:00pm
    Add to CalendarAmerica/New_YorkSymposium Series on Emerging Model Organisms with Tessa Montague06/13/2025 4:00 pm06/13/2025 5:00 pmBuilding 46,3189
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology