Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Enriching models of natural language with auxiliary data
Thesis Defense

Enriching models of natural language with auxiliary data

Speaker(s)
Jonathan Malmaud
Add to CalendarAmerica/New_YorkEnriching models of natural language with auxiliary data11/19/2019 9:00 pm11/20/2019 1:00 amBrain and Cognitive Sciences Complex, 43 Vassar Street,McGovern Seminar Room 46-3189, Cambridge MA
November 19 - 20, 2019
9:00 pm - 1:00 am
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street,McGovern Seminar Room 46-3189, Cambridge MA
Contact
Joanna da Cunha
    Description

    The highest-performing natural language processing models generally solve language tasks by deriving statistical regularities of sequences of arbitrary tokens supplied as training data. Humans have a much richer notion of language, however. For one thing, they understand that language refers to objects and actions in the real world, which enables them to use language to efficiently transmit instructions on how to accomplish goals. For another, they learn to focus their attention on only those spans of text important for accomplishing the task at hand.  In this thesis, we attempt to improve machine models of language by taking inspiration from these aspects of human language.

    The first half of this thesis concerns understanding instructional ``how-to'' language, such as ``Add remaining flour. Then mix.'' The meaning is ambiguous without context: Add how much flour to what? Mix what, using what tools, until when? We show how to successfully parse this language by maintaining a distribution over the state of a theoretical kitchen as the instructions are parsed. We also show how to aid interpretation if videos of the task are also available by training a joint vision-language model over 300,000 Youtube videos on how to cook.

    The second half discusses taking advantage of people's ability to focus on important parts of a passage in a multiple-choice reading comprehension task to enhance the performance of an automatic question-answering system. We record the gaze location of hundreds of subjects as they read and answer questions about newspaper articles. We then train a state-of-the-art transformer model to predict human attention as well correct answers and find this leads to a substantial boost in performance over merely training the model to predicting correct answers.

     

     

     

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology