Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Dopamine increases signal-to-noise in cortical-brainstem responses to aversive stimuli
Caitlin_Defense_Reception.png
Department of Brain and Cognitive Sciences (BCS)
Thesis Defense

Dopamine increases signal-to-noise in cortical-brainstem responses to aversive stimuli

Speaker(s)
Caitlin M. Vander Weele, Tye Lab
Add to CalendarAmerica/New_YorkDopamine increases signal-to-noise in cortical-brainstem responses to aversive stimuli04/13/2018 7:00 pm04/13/2018 8:00 pmBrain and Cognitive Sciences Complex, 43 Vassar Street, Singleton Auditorium, Cambridge MA
April 13, 2018
7:00 pm - 8:00 pm
Location
Brain and Cognitive Sciences Complex, 43 Vassar Street, Singleton Auditorium, Cambridge MA
Contact
Department of Brain and Cognitive Sciences
    Description

    Despite abundant evidence that dopamine modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioral functions, the precise circuit computations remain elusive. One potentially unifying theoretical model by which dopamine can modulate functions from working memory to schizophrenia is that dopamine serves to increase the signal-to-noise ratio in mPFC neurons, where neuronal activity conveying sensory information (signal) are amplified relative to spontaneous firing (noise). To connect theory to biology, we lack direct evidence for dopaminergic modulation of signal-to-noise in neuronal firing patterns in vivo and a mechanistic explanation of how such computations would be transmitted downstream to instruct specific behavioral functions. We demonstrate that dopamine increases signal-to-noise ratio in mPFC neurons projecting to the dorsal periaqueductal gray (dPAG) during the processing of an aversive stimulus. First, using electrochemical approaches, we reveal the precise time course of tail pinch-evoked dopamine release in the mPFC. Second, we show that dopamine signaling in the mPFC biases behavioral responses to punishment-predictive stimuli, rather than reward-predictive cues. Third, in contrast to the well-characterized mPFC-NAc projection, we show that activation of mPFC-dPAG neurons is sufficient to drive place avoidance and defensive behaviors. Fourth, to determine the natural dynamics of individual mPFC neurons, we performed single-cell projection-defined microendoscopic calcium imaging to reveal a robust preferential excitation of mPFC-dPAG, but not mPFC-NAc, neurons to aversive stimuli. Finally, photostimulation of VTA dopamine terminals in the mPFC revealed an increase in signal-to-noise ratio in mPFC-dPAG neuronal activity during the processing of aversive, but not rewarding stimuli. Together, these data unveil the utility of dopamine in the mPFC to effectively filter sensory information in a valence-specific manner.

    Upcoming Events

    Jul
    Thu
    3
    Department of Brain and Cognitive Sciences (BCS)

    Akhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks

    1:00pm
    Add to CalendarAmerica/New_YorkAkhilan Boopathy Thesis Defense: Towards High-Dimensional Generalization in Neural Networks07/03/2025 1:00 pm07/03/2025 1:00 pmBuilding 46,Singleton Auditorium, 46-3002
    Jul
    Fri
    11
    Simons Center for the Social Brain

    Special Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy

    3:00pm to 4:00pm
    Add to CalendarAmerica/New_YorkSpecial Seminar with Dr. Balázs Rózsa: Real-Time 3D Imaging and Photostimulation in Freely Moving Animals: A Novel Approach Using Robotic Acousto-Optical Microscopy07/11/2025 3:00 pm07/11/2025 4:00 pmBuilding 46,46-3310
    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology