Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Deciphering the Heterogeneity and Assembly of the Dorsal Raphe Serotonin System
The Picower Institute for Learning and Memory
Seminar

Deciphering the Heterogeneity and Assembly of the Dorsal Raphe Serotonin System

Speaker(s)
Jing Ren, PhD
Add to CalendarAmerica/New_YorkDeciphering the Heterogeneity and Assembly of the Dorsal Raphe Serotonin System02/20/2019 3:00 pm02/20/2019 4:00 pm46-3002, Singleton Auditorium
February 20, 2019
3:00 pm - 4:00 pm
Location
46-3002, Singleton Auditorium
Contact
Brittany Greenough
Host
Matthew Wilson
    Description

    The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.

    Upcoming Events

    Jun
    Wed
    11
    McGovern Institute for Brain Research

    ODIN@McGovern Workshop

    9:30am to 5:00pm
    Add to CalendarAmerica/New_YorkODIN@McGovern Workshop 06/11/2025 9:30 am06/11/2025 5:00 pmBuilding 46,3189
    Jun
    Fri
    13
    Department of Brain and Cognitive Sciences (BCS)

    Leyla Akay Thesis Defense: When Memory Unravels: How the Alzheimer's disease risk gene APOE4 impacts oligodendrocyte metabolism and myelination

    2:00pm
    Add to CalendarAmerica/New_YorkLeyla Akay Thesis Defense: When Memory Unravels: How the Alzheimer's disease risk gene APOE4 impacts oligodendrocyte metabolism and myelination06/13/2025 2:00 pm06/13/2025 2:00 pmBuilding 46,Singleton Auditorium
    Jun
    Fri
    13
    McGovern Institute for Brain Research

    Symposium Series on Emerging Model Organisms with Tessa Montague

    4:00pm to 5:00pm
    Add to CalendarAmerica/New_YorkSymposium Series on Emerging Model Organisms with Tessa Montague06/13/2025 4:00 pm06/13/2025 5:00 pmBuilding 46,3189
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology