Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Can we fix the brain like we fix electronic circuits?
The Picower Institute for Learning and Memory
Special Seminar

Can we fix the brain like we fix electronic circuits?

Speaker(s)
Jin Hyung Lee, PhD
Add to CalendarAmerica/New_YorkCan we fix the brain like we fix electronic circuits?11/17/2020 9:00 pm11/17/2020 10:00 pmZoom Webinar
November 17, 2020
9:00 pm - 10:00 pm
Location
Zoom Webinar
Contact
Brittany Greenough
Host
Li-Huei Tsai and Matthew Wilson
    Description

    This seminar is being held virtually on Zoom Webinar. Click here to watch.

    Can we fix the brain like we fix electronic circuits?

    Neurological and psychiatric disorders are dramatically increasing in prevalence due to aging population and social isolation. However, to date, there is no cure for any of the brain disorders. The goal of brain disorder treatments is to restore the brain’s function. Therefore, a key challenge is to quantify the brain function underlying behavior. Once the brain function algorithms underlying behaviors of interest can be quantitatively defined, minimizing the normal and diseased brain function difference can be defined as the objective function for the brain disorder treatment. The variables then can be optimized to minimize the objective function. In order to quantify the brain function algorithms underlying behavior, cell type specific whole brain function measurements are necessary. We utilize optogenetics combined with fMRI (ofMRI) to enable such measurements. Through computational modeling of ofMRI data, the functional interactions among different regions of the brain was then quantified. In combination with electrophysiological measurements, we further model brain function at a cellular level. In order to further understand the circuit, pathology relationship, we also utilize brain clearing methods to longitudinally quantify and model pathology. Through these efforts, we aim to enable systematic design of therapeutic interventions necessary for the treatment of brain disorders.

    Speaker Bio

    Jin Hyung Lee, PhD is an Associate Professor of Neurology and Neurological Sciences, Bioengineering, Neurosurgery, and Electrical Engineering (Courtesy) at Stanford University. Dr. Lee received her Bachelor’s degree from Seoul National University and Masters and Doctoral degree from Stanford University, all in Electrical Engineering. She is a recipient of the 2008 NIH/NIBIB K99/R00 Pathway to Independence Award, 2010 NIH Director’s New Innovator Award, 2010 Okawa Foundation Research Grant Award, 2011 NSF CAREER Award, 2012 Alfred P. Sloan Research Fellowship, 2012 Epilepsy Therapy Project award, 2013 Alzheimer’s Association New Investigator Award, 2014 IEEE EMBS BRAIN young investigator award, 2017 NIH/NIMH BRAIN grant award, and 2018 Lina 50+ Award Grand Prize, and 2019 NIH Director’s Pioneer Award. As an Electrical Engineer by training with Neuroscience research interest, her goal is to analyze, debug, and engineer the brain circuit through innovative technology.

    Upcoming Events

    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology