Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Events

News Menu

  • News
  • Events
  • Newsletters

Breadcrumb

  1. Home
  2. Events
  3. Brains, Minds + Machines Seminar Series: Modal-Set Estimation using kNN graphs, and Applications to Clustering
C75C2754-B507-4B9F-A52E-5F353DADCA65.jpeg
Center for Brains, Minds and Machines (CBMM)
Seminar

Brains, Minds + Machines Seminar Series: Modal-Set Estimation using kNN graphs, and Applications to Clustering

Add to CalendarAmerica/New_YorkBrains, Minds + Machines Seminar Series: Modal-Set Estimation using kNN graphs, and Applications to Clustering 10/12/2018 8:00 pm10/12/2018 9:00 pmSingleton Auditorium (MIT 46-3002) - 43 Vassar Street, Cambridge MA 02139
October 12, 2018
8:00 pm - 9:00 pm
Location
Singleton Auditorium (MIT 46-3002) - 43 Vassar Street, Cambridge MA 02139
Contact
Frederico Azevedo, Hector Penagos
    Description

    Abstract:  Estimating the mode or modal-sets (i.e. extrema points or surfaces) of an unknown density from sample is a basic problem in data analysis. Such estimation is relevant to other problems such as clustering, outlier detection, or can simply serve to identify low-dimensional structures in high dimensional-data (e.g. point-cloud data from medical-imaging, astronomy, etc).  Theoretical work on mode-estimation has largely concentrated on understanding its statistical difficulty, while less attention has been given to implementable procedures. Thus, theoretical estimators, which are often statistically optimal, are for the most part hard to implement. Furthermore for more general modal-sets (general extrema of any dimension and shape) much less is known, although various existing procedures (e.g. for manifold-denoising or density-ridge estimation) have similar practical aim. I’ll present two related contributions of independent interest: (1) practical estimators of modal-sets – based on particular subgraphs of a k-NN graph – which attain minimax-optimal rates under surprisingly general distributional conditions; (2) high-probability finite sample rates for k-NN density estimation which is at the heart of our analysis. Finally, I’ll discuss recent successful work towards the deployment of these modal-sets estimators for various clustering applications.  
     
    Much of the talk is based on a series of work with collaborators S. Dasgupta, K. Chaudhuri, U. von Luxburg, and Heinrich Jiang. 
    Speaker Biography:  Samory Kpotufe graduated with a PhD, in Sept 2010, from Computer Science at the University of California, San Diego; his advisor was Dr. Sanjoy Dasgupta. Dr. Kpotufe then joined Max Planck Institute for Intelligent Systems as a research in the department of Bernhard Schoelkopf, in the learning theory group of Ulrike von Luxburg. Following his work at MPI, Dr. Kpotufe was an Assistant Research Professor at the Toyota Technological Institute at Chicago. Prof. Kpotufe is now the Assistant Professor of Operations Research and Financial Engineering at Princeton University.
    Speaker's research interests:  I work in machine learning, with an emphasis on nonparametric methods and high-dimensional statistics. Generally, I’m interested in understanding the inherent difficulty of high-dimensional problems, under practical constraints from real-world application domains. The nonparametric setting is attractive in that it captures scenarios where we have little domain knowledge, which is important as data sciences reach into a diverse range of applications.
    My main practical aim is to design adaptive procedures, i.e., practical procedures that can self-tune to unknown structure in data (e.g., manifold, sparsity, clusters), while at the same time meeting the various constraints (e.g., time, space, labeling cost) of modern applications.
    For more, here is a recent research statement.

    Upcoming Events

    Jul
    Tue
    15
    McGovern Institute for Brain Research

    Special Seminar with Liset M. de la Prida

    10:00am to 11:00am
    Add to CalendarAmerica/New_YorkSpecial Seminar with Liset M. de la Prida07/15/2025 10:00 am07/15/2025 11:00 amBuilding 46,3310
    See All Events
    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology