Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
      • Community Concerns
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Directory

Breadcrumb

  1. Home
  2. Directory
  3. Shimon Ullman
Ullman-250x250px.jpg
Ullman
Shimon
Ph.D.
Research Affiliate
Brain & Cognitive Sciences
Building
46-5149
Email
sullman@mit.edu
Phone
6173245340
    About

    Samy and Ruth Cohn Professor of Computer Science
    Head, Department of Computer Science and Applied Mathematics
    The Weizmann Institute of Science, Rehovot, Israel

     

    Research

    My general area of research is the study of vision - including the processing of visual information by the human visual system, and computer vision. The goals of this research are to understand how our own visual system operates, and how to construct artificial systems with visual capabilities including, for example, aids for the visually impaired. The two goals, understanding human vision and computer vision, are strongly interconnected. At present, the performance of the human visual system is superior in almost every respect to that of machine vision systems. This is particularly striking in the case of object classification, where the performance of the best computer models cannot rival the performance of a three year old child. The study of the computations performed by the human visual system can therefore lead to new insights and to the development of new and better methods for analyzing visual information. At the same time, given the enormous complexity of the human visual system, a better theoretical understanding of the computations underlying the processing of visual information can supply useful guidelines for empirical studies of the biological mechanisms subserving visual perception. The focus of my current research in on the topic of visual object recognition, and the biological modeling of information processing in the visual cortex. An example of recent research direction is work on a fragment-based approach to object classification and segmentation. In this approach objects within a classe represented in terms of common image fragments, that are used as building blocks for representing a large variety of different objects that belong to a common class, such as a face or a car. Optimal fragments are selected from a training set of images based on a criterion of maximizing the mutual information of the fragments and the class they represent. These fragments are typically of intermediate complexity in size and resolution. This approach appears to have good classification and generalization capabilities. Image segmentation is obtained in this approach as a part of the segmentation process, and it combines both bottom-up and top- down components.

    Publications

    Karlinsky, L. Dinershtein, D. Ullman, S. (2009) Unsupervised feature optimization (UFO): Simultaneous selection of multiple features with their detection parameters. CVPR, pp. 1263-1270.

    Levi, D. and Ullman, S. (2009) Learning model complexity in an online environment. CRV, pp. 260-267, IAPR Best Paper Award for 2009.

    Karlinsky L., Dinerstein M., Harari D., and Ullman S. (2010) The chains model for detecting parts by their context. CVPR, 2010.

    Karlinsky, L. Dinershtein, D. Ullman, S. (2010) Using body-anchored priors for identifying actions in single images. NIPS, Accepted.

    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility | Adapting to COVID

    Massachusetts Institute of Technology