Featured News

The brain divides vision between its two hemispheres — what’s on your left is processed by your right hemisphere, and vice versa — but your experience with every bike or bird that you see zipping by is seamless. A new study reveals how the brain handles the transition.
“It’s surprising to some people to hear that there’s some independence between the hemispheres, because that doesn’t really correspond to how we perceive reality,” says Earl K. Miller, Picower Professor in the Picower Institute for Learning and Memory and MIT’s Department of Brain and Cognitive Sciences. “In our consciousness, everything seems to be unified.”
Led by Picower Fellow Matthew Broschard and Research Scientist Jefferson Roy, the research team measured neural activity in the brains of animals as they tracked objects crossing their field of view. The results reveal that different frequencies of brain waves encoded and then transferred information from one hemisphere to the other in advance of the crossing, and then held on to the object representation in both hemispheres until after the crossing was complete. The findings were published in the Journal of Neuroscience.
Featured News

The first comprehensive map of mouse brain activity has been unveiled by a large international collaboration of neuroscientists.
Researchers from the International Brain Laboratory (IBL), including BCS neuroscientist Ila Fiete, published their open-access findings today in two papers in Nature, revealing insights into how decision-making unfolds across the entire brain in mice at single-cell resolution. This brain-wide activity map challenges the traditional hierarchical view of information processing in the brain and shows that decision-making is distributed across many regions in a highly coordinated way.
Featured News

More than 300 million people worldwide are living with rare disorders — many of which have a genetic cause and affect the brain and nervous system — yet the vast majority of these conditions lack an approved therapy. Because each rare disorder affects fewer than 65 out of every 100,000 people, studying these disorders and creating new treatments for them is especially challenging.
Thanks to a gift from Ana Méndez ’91 and Rajeev Jayavant ’86, EE ’88, SM ’88, MIT is now poised to fill gaps in this research landscape. By establishing the Rare Brain Disorders Nexus — or RareNet — at MIT's McGovern Institute for Brain Research, the alumni aim to convene leaders in neuroscience research, clinical medicine, patient advocacy, and industry to streamline the lab-to-clinic pipeline for rare brain disorder treatments.
“Ana and Rajeev’s commitment to MIT will form crucial partnerships to propel the translation of scientific discoveries into promising therapeutics and expand the Institute’s impact on the rare brain disorders community,” says MIT President Sally Kornbluth. “We are deeply grateful for their pivotal role in advancing such critical science and bringing attention to conditions that have long been overlooked.”