Skip to main content
Brain and Cognitive Sciences

Brain and Cognitive Sciences

  • Directory
  • Give to BCS
  • Apply to BCS
  • Contact Us

Search form

Main menu

  • About BCS
    • Governance & Leadership
    • Building 46
    • History
    • BCS HQ Staff Contacts
    • Employment
  • Our Faculty
  • Academic Program
    • Undergraduate & MEng
      • Course 9: Brain and Cognitive Sciences
      • Course 6-9: Computation and Cognition
      • Course 6-9 Master of Engineering
    • Post-baccalaureate
    • Doctoral Program
      • Degree Requirements
      • Research Programs & Opportunities
      • Resources & Forms
      • Class Schedule
      • Admissions
      • Financial Information
    • Postdoctoral
    • Helpful Links & Resources
  • Research
    • Cellular / Molecular Neuroscience
    • Systems Neuroscience
    • Computation
    • Cognitive Science
    • Community & Resources
  • News + Events
    • News
    • Events
    • Media
    • Newsletter
    • Archives
  • Diversity
    • Statement of Support
    • MIT Summer Research Program (MSRP)
    • Post-baccalaureate Research Scholars Program

Directory

You are here

  1. Home
  2. / Directory
  3. / Harnett, Mark Ph.D.
Harnett, Mark
Ph.D.
Associate Professor of Neuroscience
Brain & Cognitive Sciences
Investigator
McGovern Institute for Brain Research

Building: 

46-6143
Email: harnett@mit.edu

Phone: 

6173246989

Administrative Asst: 

Breidinger, Alexa
Lab website

Profile Bottom

About

Mark joined the faculty at MIT in 2015. He received his B.A. in Biology from Reed College in Portland, Oregon and his Ph.D. from the University of Texas at Austin. Prior to joining MIT, he was a postdoctoral researcher at the Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn VA.

Research

Our laboratory studies how the biophysical features of individual neurons endow neural circuits with powerful processing capabilities, ultimately facilitating the complex computations required to drive adaptive behavior.  A principal focus of our work is the role of dendrites, the elaborate tree-like structures where neurons receive the vast majority of afferent input.  The spatial arrangement of synaptic contacts on dendrites and the interaction of various biophysical mechanisms enable complex integration of synaptic inputs – our hypothesis is that circuit-level computations are built out of these fundamental operations.

BIOPHYSICS & SINGLE-CELL COMPUTATION

The morphological features and local ion channel mechanisms in specific dendritic compartments strongly influence how neurons integrate their inputs.  We combine brain slice electrophysiology, two-photon imaging, and biophysical modeling to investigate the rules and mechanisms supporting different forms of input-output processing across mammalian species.  

NEURONAL COMPUTATION IN THE BEHAVING ANIMAL

How do biophysical mechanisms influence circuit-level computation during behavior?  To address this question, we combine 2-photon imaging and multi-unit electrophysiological recording techniques with novel rodent behavioral paradigms to measure the activity of neuronal populations including subcellular compartments.  This allows us to evaluate the engagement of dendritic mechanisms as a function of circuit dynamics during complex behaviors.  These experiments are complemented by detailed anatomical and single-cell physiological investigations in brain slices.

HEAD-DIRECTION COMPUTATIONS

Head direction is critical for efficient navigation and provides an experimentally tractable system with which to study multimodal integration in neural circuits.  We use state-of-the-art chronic tetrode implants to record HD activity while mice perform goal-directed navigation in darkness and reorient to visual landmarks.  These experiments are combined with anatomical, physiological, and optogenetic techniques, as well as novel behavioral and computational methods, to dissect the cellular and circuit architecture of head direction representations.

Teaching

9.17 Systems Neuroscience Laboratory

Publications

Beaulieu-Laroche L, Toloza EHS, Brown NJ, Harnett MT (2019). Widespread and highly correlated somato-dendritic activity in cortical layer 5 neurons. Neuron

Ranganathan GN, Apostolides PF, Harnett MT, Xu NL, Druckmann S, Magee JC (2018). Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nature Neuroscience 21(11):1583-90

Beaulieu-Laroche L, Toloza EHS, van der Goes MS, Lafourcade M, Barnagian D, Williams ZM, Eskandar EN, Frosch MP, Cash SS, Harnett MT (2018). Enhanced dendritic compartmentalization in human cortical neurons. Cell 175(3):643-651

Beaulieu-Laroche L & Harnett MT (2018). Dendritic spines prevent synaptic voltage clamp. Neuron 97(1):75-82

Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, Yeon Kim J, Kim S, Kim H, Waisman A, Littman DR, Wickersham IR, Harnett MT, Huh JR, Choi GB (2017). Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549(7673):482-487

  • Directions
  • Contact Us
  • Staff Resources
  • Employment
  • Be a Test Subject
  • Login
  • McGovern
  • Picower

MIT Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 46-2005

Cambridge, MA 02139-4307 | (617) 253-5748

For Emergencies | Accessibility | Adapting to COVID